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We calculate the efficiency of a rejection-free dynamic Monte Carlo method for d-dimensional off-lattice
homogeneous particles interacting through a repulsive power-law potential r−p. Theoretically we find the
algorithmic efficiency in the limit of low temperatures and/or high densities is asymptotically proportional to
��p+2�/2T−d/2 with the particle density � and the temperature T. Dynamic Monte Carlo simulations are per-
formed in one-, two-, and three-dimensional systems with different powers p, and the results agree with the
theoretical predictions.
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I. INTRODUCTION

Since their introduction in 1953 �1� classical Monte Carlo
�MC� methods have matured into a useful tool for studying
many different phenomena in different fields such as material
science, high energy physics, and biology �2–4�. For the
study of the statics of a given model, the MC method can be
viewed as a probabilistic method of performing multidimen-
sional integrals �5� that could correspond to the partition �or
grand partition� function of the model �2�. Various methods
to increase the efficiency or accuracy of the method exist,
including importance sampling �2�, which allows the MC
method to provide an estimate for the ratio of two integrals,
for example, to give an estimate of the average energy �E� of
the system. Other advanced algorithms, such as Swendsen-
Wang or cluster algorithms �2,6�, can also be used to allevi-
ate difficulties associated with critical slowing down near Tc
or being frozen into valleys for T�Tc. All of these advanced
methods are allowed because they provide estimates for the
underlying integral�s� in an efficient fashion. For any of
these MC methods, the system to be studied is in some con-
figuration, which has a particular energy Ei, and an algorithm
to obtain a new configuration j from configuration i is imple-
mented. For M generated configurations, the estimate for the
average energy is given by �E�= 1

M �i=1
M Ei.

If one is interested in the physical time evolution of a
model system, the MC method can still be used. Although in
principle any MC algorithm for statics could be used to study
the time development through phase space of the model sys-
tem, only certain MC methods will correspond to the actual
time evolution of the system being modeled. In other words,
many of the methods mentioned above, such as Swendsen-
Wang or cluster algorithms �2,6�, change the rate at which
the system moves through phase space and consequently
would usually not be associated with the actual time devel-

opment of the physical system. The older MC literature sim-
ply refers to the method as a MC method �see the references
in Sec. 3.4 of Ref. �4��, even when the time development of
the MC algorithm is assumed to correspond to that of the
actual model system �7�. More recently, use of MC methods
to study the physical time dependence of a model system has
been called either dynamic MC or kinetic MC. Although
these two terms are sometimes used interchangeably, there is
an emerging distinction between them. Kinetic MC has be-
come the standard name for the case where physical time
development is studied with known rate constants for the
system to evolve from one state to another �8�. These rate
constants may be approximated under certain assumptions
�such as applicability of transition state theory to atomistic
systems� using ab initio methods �8�. �Use of rate constants
also allows for the transition from discrete MC steps to con-
tinuous time.� However, there are other instances where the
physical time evolution of the system is desired while rate
constants might be unavailable �for example, perhaps transi-
tion state theory does not apply or an important complicated
multiparticle motion might be difficult to conceptualize or
calculate�. In such cases the physical time development may
sometimes still be derived from the underlying physical sys-
tem, for example, by studying the underlying quantum
mechanism for time development �9–12�, or devising a
method equivalent to the time development of the underlying
equations �13,14�.

Such studies, which we concentrate on in this paper, are
called dynamic MC studies to distinguish them from static
�equilibrium� MC or from kinetic MC studies. Thus we use
the term dynamic MC in the same way as the recent book by
Krauth �15�.

Frequently in dynamic simulations we need to work with
long time scales at very low temperatures or in a strong
external field. In these cases the standard dynamic MC
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method becomes very inefficient due to the high rejection
rate which requires a large number of trial moves before a
change is made to the state of the system. Most advanced
algorithms, such as Swendsen-Wang or cluster algorithms
�2,6�, change the dynamic of the system thereby changing
the time development of the system, which makes it impos-
sible to study systems where the MC move is based on
physical processes. The rejection-free MC �RFMC� method
was proposed to overcome this problem with standard dy-
namic MC. The RFMC was first applied to discrete spin
systems �16–18� including the kinetic Ising model �3�. It was
later generalized to classical spin systems with continuous
degrees of freedom �19�. The RFMC method allows us to
efficiently simulate a system with a high rejection rate with-
out any changes of the original dynamics, since it shares the
original Markov chain with the standard dynamic MC
method. The RFMC method in this paper is very similar to
the method labeled faster-than-the-clock algorithm in Ref.
�15�.

The RFMC requires, to proceed by one algorithmic step,
the values of all the probabilities of choosing a new state.
Therefore, the computational cost of one step is larger than
that of the standard MC. For this reason it is necessary to
have a method to calculate its efficiency on a particular prob-
lem without implementing the method directly. Watanabe et
al. developed a method �20� to calculate the efficiency of the
RFMC for spin systems and hard particle systems. In the
present paper, we evaluate the efficiency of the RFMC
method for dynamic MC studies of d-dimensional particle
systems with the particles interacting through a repulsive
short-range power-law potential. Even though the bookkeep-
ing involved in actually implementing the RFMC method
may be substantial, leading to more computer time per algo-
rithmic step than the standard dynamic MC method, at tem-
peratures low enough or fields high enough where rejection
rates are extremely high, the RFMC will be more efficient
than the standard dynamic MC algorithm.

The paper is organized as follows. In Sec. II, we present a
review of the standard dynamic MC algorithm and the
RFMC algorithm. In Sec. III, we provide analytical estimates
for the efficiency of the RFMC method for repulsive power-
law potentials. In Sec. IV, we show the results of our simu-
lations in one, two, and three dimensions. Section V is de-
voted to discussions and conclusions.

II. DYNAMIC MONTE CARLO

A. Standard dynamic Monte Carlo

The standard dynamic MC algorithm for particle systems
involves the following six iterative steps, with one iteration
being called a MC step �MCS�. We have used the term dy-
namic MC for this algorithm, rather than the term time-
quantified MC used in �13,14�, since it has been used previ-
ously �10–12,15�. It is important to remember that in
dynamic MC the time in MCS is proportional to the physical
time in seconds �9–14�. The algorithm satisfies detailed bal-
ance. It is very similar to the time quantification of the dy-
namic MC for Brownian ratchets �14�.

�1� Choose one particle randomly from the N particles, the
chosen particle i is located at position r�old,i.

�2� Choose a new position of the chosen particle ran-
domly as r�new,i=r�old,i+�r�, with �r� chosen uniformly over a
d-dimensional hyperspherical volume

Vchoose =
�d/2rchoose

d

��d

2
+ 1	 , �1�

with a radius rchoose and the gamma function �. The prob-
ability density for choosing the new position of the chosen
particle is ddxi /Vchoose.

�3� Reject the new position if it is located outside the cage
formed by line segments joining its nearest-neighbor �nn�
particles. �In the usual way, the cage is defined in this off-
lattice simulation on the basis of a Voronoi diagram �or De-
launay triangulation�, but can be often equally well defined
for our homogeneous high-density systems as particles
within a certain distance of the chosen atom �20�.�

�4� Evaluate the energy difference �Ei=Enew,i−Eold,i be-
tween the new and the old positions of the chosen particle i.

�5� Decide whether to accept the trial move by comparing
a random number with the move probability which is a func-
tion of �Ei. For example, we can use the Metropolis criteria
to choose the transition probability as

P�r�new,i
r�old,i� = � 1 if �Ei � 0,

exp�− ��Ei� otherwise.
� �2�

�6� If the trial move is accepted, move the particle to its
new position, otherwise leave it in its old position.

B. Dynamic Monte Carlo without rejections

The rejection-free MC �RFMC� method was developed to
overcome the decrease in the efficiency of the standard dy-
namic MC method in cases where the rejection rate is high,
for example, in systems at a very low temperature. The effi-
ciency of the standard dynamic MC algorithm is the rate at
which it changes the current state of the system, this is the
fraction of accepted moves to the total number of move at-
tempts. One algorithmic step of the RFMC involves the fol-
lowing procedures.

�1� Compute the time to leave the current state �the wait-
ing time twait�. This is the number of trial states which would
be rejected in the standard dynamic MC. Hence in one algo-
rithmic step the time is advanced by twait.

�2� Advance the time of the system by twait.
�3� Calculate probabilities 	i for each of the N particles,

where 	i denotes the probability that the trial move of par-
ticle i would be rejected in the standard dynamic MC given
that it was the particle chosen for the trail move. Explicitly,

	i = 1 −
1

Vchoose


Vchoose

P�r�new,i
r�old,i�ddxnew,i. �3�

�4� Then choose a particle with the probability propor-
tional to 1−	i, that is, the probability that the particle i is
chosen is given by

1−	i

�k=1
N �1−	k�

. Therefore, the particle which is
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easy to move has a higher probability to be chosen.
�5� Choose a new position of the chosen particle. This is

accomplished using the probability density

P�r�new,i
r�old,i�ddxnew,i

Vchoose�1 − 	i�
. �4�

The above procedure does not contain any rejection step, and
therefore, each RFMC algorithmic step always involves a
change of state of the system.

The efficiency of the RFMC method is inversely propor-
tional to the rejection rate of the standard dynamic MC, but
they share the same dynamics. Therefore, the efficiency of
the RFMC is related to the inefficiency of the standard dy-
namic MC. For this reason the efficiency of the RFMC will
be proportional to twait which is given by �20,21�

twait = � ln r̃

ln 
 � + 1. �5�

Here r̃ is a random number uniformly distributed on �0,1�,
�¯� is the integer part, and 
= 1

N�i=1
N 	i is the probability to

stay in the current state �that the move to the trial state will
be rejected� after one standard dynamic MC trial move. The
units of time are in MCS, but can be quantified with physical
time �9–14�. We have used the Metropolis method �1� as
shown in Eq. �2� in this example and in our simulations in
the next section. However, the RFMC algorithm would also
work for different functional probabilities such as the
Glauber or heat-bath dynamic �2,3,9� or a phonon dynamic
�10,12�.

III. EFFICIENCY OF RFMC FOR POWER-LAW
POTENTIALS

Consider d-dimensional particles with a repulsive power-
law potential and Nnn nearest-neighbors �nn� �the particles
that form its cage�. The potential between any two nn par-
ticles is

V�r� = ���

r
	p

− � �

r0
	p

, r � r0,

0, r � r0,
� �6�

where r is the distance between particles, p is the power, r0 is
the cutoff distance, and � is the length that gives the strength
of the interaction, respectively. The potential of Eq. �6� rep-
resents the hard repulsive core of any potential, such as the
Lennard-Jones potential which has p=12. The repulsive part
is expected to become dominant at high densities.

We have chosen the origin of the coordinate system to be
at the position of the chosen atom i. The energy difference of

the atom i is given by �Ei=Ui�x��−Ui�0�� with x� the trial
position. The efficiency of the rejection-free algorithm at low
temperatures and/or high densities is given for the Metropo-
lis dynamic by

�exp�− ��E�� =

��d

2
+ 1	

�d/2rchoose
d 

−



¯ 
−



ddx�cage

�min†exp�− ��Ui�x�� − Ui�0����,1‡ , �7�

where the interaction energy for particle i is given by the
power-law dependence, p, of the repulsive part of the inter-
atomic potential

Ui�x�� = �
Nnn

V�r� = �
k=1

Nnn �p


x� − x�k
p
, �8�

with x�k the position of the kth nn atom of the chosen atom i.
Here �cage restricts the integrand to be nonzero only within
the cage formed by the nn particles. The angular brackets
denote an average over all allowed states of the system
weighted with the Boltzmann weight at each configuration.
Since we are interested in the system at high densities or at
low temperatures, we can utilize the Laplace saddle-point
integration approximation �22�

Zp = ¯ ddxP�x�� � P�x�0���2��d

det A
, �9�

where the integrand P�x�� is strongly peaked around x� =x�0 and

Aij = − � �2

�xi�xj
ln�P�x����

x�=x�0

. �10�

We assumed the chosen particle is at or near its local energy
minimum, i.e., P�x�0��1. Therefore,

�exp�− ��E�� �
��d

2
+ 1	Td/2

�d/2rchoose
d � �2��d


det Ã

, �11�

since after making the derivation in Eq. �10� we get a factor
of � and the only values that are not 0 are when i= j we have

defined Aij =�Ãij, and the determinant of A is thus propor-
tional to �d. This immediately gives that the asymptotic tem-
perature dependence of the average waiting time is propor-
tional to �d/2=T−d/2.

Furthermore, because of the power-law approximation of
Eq. �8�, and that two partial derivatives must be taken for the
saddle-point approximation Aij �rnn

−p−2 where rnn is the nn
distance if all nn atoms are equidistant from the chosen atom.
The particle density � is proportional to rnn

−d, and therefore,

det A
−d/2��rnn

−p−2�−d/2���−p−2�/2. Equation �7�, therefore be-
comes

�exp�− ��E�� �
Td/2

rchoose
d ��p+2�/2 , �12�

and asymptotically the average time between acceptances in
the dynamic MC procedure is
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�twait� �
1

�exp�− ��E��
�

rchoose
d ��p+2�/2

Td/2 . �13�

Equation �13� is the main result of this paper. The result is
very general, both for various dimensional particles and for
various power laws, as well as being general for the explicit
dynamic that is used in the MC procedure.

Throughout the present paper, we assume all the atoms
have identical potentials. In the following, we calculate the
explicit expression of Eq. �13� for several conditions. For the
one-dimensional system, the average waiting time is given
by

�twait�d=1 =
2rchoose

rnn
�p+2�/2 ��pp�p + 1�

T�
�

��p+2�/2

�T
, �14�

since Vchoose=2rchoose, Nnn=2, and


Ã
 = � �2�Ui�x�� − Ui�0���
�x2 �

x=0
=

2�pp�p + 1�
rnn

p+2 . �15�

For the two-dimensional system which has a hexagonal lat-
tice as the ground state, the average waiting time is given by

�twait�d=2 =
3�pp2rchoose

2

2Trnn
p+2 �

��p+2�/2

T
, �16�

since Vchoose=�rchoose
2 , Nnn=6, and

Ãij = � �2�Ui�x�� − Ui�0���
�xi�xj

�
x�=0

= − �ij
3�pp2

rnn
p+2 , �17�

with the Kronecker delta �ij. For the three-dimensional sys-
tem which has the face-centered-cubic �fcc� lattice as the
ground state, the average waiting time is given by

�twait�d=3 =
��pp�p − 1��3/2rchoose

3

3��2�10+3p�/4T3/2rnn
�3�p+2��/2 �

��p+2�/2

T3/2 , �18�

since Vchoose= �4 /3��rchoose
3 , Nnn=12, and

Ãij = � �2�Ui�x�� − Ui�0���
�xi�xj

�
x�=0

= − �ij
�pp�p − 1�22+�p/2�

rnn
p+2 .

�19�

Note that, the density and the temperature dependence in a
simple-cubic lattice is equivalent to that of Eq. �19�, while

the coefficient is different since Nnn=6 and Ãij =−�ij��pp�p
−1�� /rnn

p+2.

IV. SIMULATIONS IN d=1, 2, AND 3

Following the methodology described above, we per-
formed simulations for one-, two-, and three-dimensional
systems. The goal is to locate where the asymptotic results of
Eq. �13� hold for our RFMC method. The density of the
system � is defined to be ��N�2a /L�d, with the number of
particles N, the radius of the particles a, the linear system
size L, and the dimensionality of the system d, respectively.
Throughout all the simulations rchoose is set to 0.05 and the

cutoff radius r0 is set to r0=1.1rnn���, with rnn��� the nearest-
neighbor distance for the given density. The simulations
were performed for four values of p: 2, 4, 6, and 12. For all
values of d, the density is fixed at �=2.0 in order to study the
temperature dependence, the temperature is fixed at T
=0.001 to study the density dependence. All simulations
were performed starting from the ground state, with periodic
boundary conditions, with the simulated volume such that an
integer number of unit cells of the ground state fit into the
volume.

We study the one-dimensional system with N=200 par-
ticles which are located on the line of length L with periodic
boundary conditions. The temperature dependence of the av-
erage for twait is shown in Fig. 1�a�, in this case with statistics
from 106 MCS per particle �MCSp�. The power-law fit gives
�twait��T−0.49�1� with the correlation coefficient r=1.00�1�
for p=2, 4, and 6, while for p=12 we obtain �twait�
�T−0.50�1� with r=1.00�1�. We have fit the region with T
�10−1, T�100, T�101, and T�101 for, respectively, p=2,
4, 6, and 12. All of these results are in agreement with our
prediction, i.e., �twait��T−0.5. The density dependence of twait
is shown in Fig. 1�b� with the number of trials in this case
106 MCSp, or 107 MCSp for high density and p=12. The
power-law fit in this case, all for ��0.6, for p=2 gives
�twait���1.99�1� with r=−1.00�1�, for p=4 gives �twait�
��2.99�1� with r=−1.00�1�, for p=6 gives �twait���4.00�1�

with r=−1.00�1�, and for p=12 gives �twait���7.00�1� with r
=−1.00�1�. Again our results agree with our asymptotic pre-
dictions, i.e., �twait����p+2�/2.

We study the two-dimensional system with N=80 par-
ticles distributed on a triangular lattice of length L and width
�3L /2 with periodic boundary conditions for both axes. Fig-
ure 2�a� shows the temperature dependence of the average
twait, in this case with the number of samples 107 MCSp. The
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FIG. 1. �Color online� �a� Temperature dependence of the aver-
age twait in d=1 for N=200 particles, the solid lines are the power-
law fits. �b� Density dependence of twait in d=1, the solid lines are
power-law fits with ��0.6.
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power-law fits give �twait��T−0.99�1� with r=1.0�1�, for p=2,
4, 6, and 12. We have fit the region with T�10−2, T�10−1,
T�10−1, and T�100 for, respectively, p=2, 4, 6, and 12.
The density dependence is shown in Fig. 2�b�, 106 MCSp are
taken for p=2, 4, 6, and 109 for p=12 at high densities. The
power-law fits, all for ��1, for p=2 gives �twait���1.99�1�

with r=−1.00�1�, for p=4 gives �twait���3.00�1� with r
=−1.00�1�, for p=6 gives �twait���4.00�1� with r=−1.00�1�,
and for p=12 gives �twait���7.09�1� with r=−1.00�1�. These
results show excellent agreement with the asymptotic predic-
tion �twait��T−1��p+2�/2 in Eq. �16�.

We also study the three-dimensional system with N=500
particles located on an fcc lattice with periodic boundary
conditions for all directions. The temperature dependence
and density dependence of the average twait are shown in
Figs. 3�a� and 3�b�, respectively. The power-law fits of the
temperature dependence gives �twait��T−1.49�1� with r
=1.00�1�, for p=2, 4, 6, and 12. We have fit the region with
T�10−3 for p=2, 4, 6 and T�10−2 for p=12. The power-
law fit, all for ��1.1, for the density dependence for p=2
gives �twait���1.98�1� with r=−1.00�1�, for p=4 gives �twait�
��3.02�1� with r=−1.00�1�, for p=6 gives �twait���4.01�1�

with r=−1.00�1�, and for p=12 gives �twait���6.96�1� with r
=−1.00�1�. The results agree with the asymptotic predictions
�twait��T−3/2��p+2�/2.

V. SUMMARY AND DISCUSSION

We studied the efficiency of the rejection-free Monte
Carlo �RFMC� method for systems having particles interact-
ing through repulsive power-law potentials. The density and
temperature dependence of the average waiting time has
been predicted to be

�twait� �
��p+2�/2

Td/2 , �20�

with the dimensionality of the system d, density �, and the
temperature T, respectively. These theoretical results are
valid asymptotically for large � and/or low T. Monte Carlo
simulations were performed and the results showed good
agreement with the asymptotic prediction. This study shows
how efficient the RFMC method is in low temperature or in
high density regimes. Assume the wall-clock time per algo-
rithmic step for the standard dynamic Monte Carlo algorithm
is t0, and the average wall-clock time per RFMC algorithmic
step is t1 �both of which are expected to be almost indepen-
dent of T and ��. Because of the extra bookkeeping involved
in programming the RFMC method, t1� t0. Nevertheless, the
RFMC method will be more efficient �use less wall-clock
time� whenever t1� t0�twait�. This inequality will always be
satisfied for low enough T or high enough density.

The RFMC method does not change the dynamic of the
MC move associated with the underlying physical dynamics,
and therefore makes possible the study of systems with a
fixed physical dynamic. It is very important to keep the dy-
namics unchanged, since the change in the dynamics of the
MC move can cause a strong influence in certain dynamic
physical properties �11,17,18,23�.

Although we studied a repulsive core power-law poten-
tial, we expect the equivalent behavior of the waiting time
for more realistic potentials, as long as we work with the
system at low temperatures and/or high densities. A further
avenue of study, therefore, could be to calculate the effi-
ciency of the RFMC method for more general potentials such
as Lennard-Jones, or those derived from density functional
theory. A related study could also be of the efficiency of the
RFMC in the case of two or more types of particles. The
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FIG. 2. �Color online� �a� Temperature dependence and �b� den-
sity dependence of the average twait in d=2 for N=80 particles. The
solid lines are the power-law fits.
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FIG. 3. �Color online� �a� Temperature dependence and �b� den-
sity dependence of the average twait for a three-dimensional fcc
system with N=500 particles. The solid lines are the power-law fits.
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actual implementation and utilization of the RFMC method
in particle simulations can be attempted now that the ulti-
mate behavior of the algorithmic efficiency has been deter-
mined.
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